Dallas-Houston Intercity Rail

Preliminary Findings

Agenda

- Introduction
- Approach
- Early Findings
- EmergingRecommendations

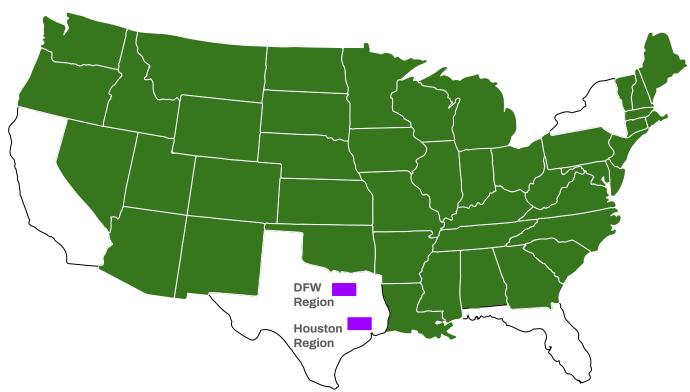
About Us

- Graduate students at UT Austin's School of Architecture - City and Regional Planning Program
- This course is a Practicum aimed at studying a real problem and offering real solutions
- Final presentation May 2

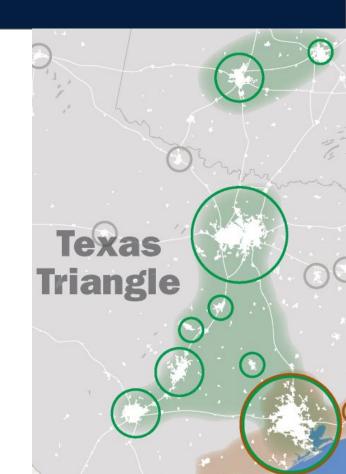
Recent field trip viewing possible rail corridors from Houston to Dallas

The Mission

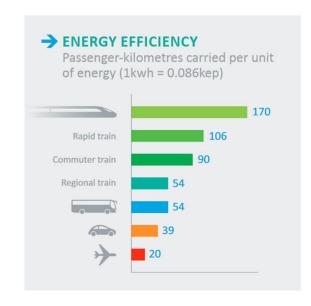
- Determine if Dallas and Houston should be connected by passenger rail
- If so, which mode produces the most benefit (high speed rail, high performing rail, conventional rail) to TEXANS
- Forget the actors for a moment; sketch the ideal traits of developers and operators to serve the needs of Texans
- Build a policy roadmap with a nod to realistic politics


Outside of Project Scope

- Precise station locations
- Operational specifics
- Prescriptive funding strategy


Why Texas?

States with a smaller population than DFW and Houston MSA


Why Now?

- Texas population expected to increase by 88% by 2050
- DFW and Houston will be the top two largest metro areas by 2100
- eCommerce is pushing the limits of American cargo/freight capacity
 AND nearshoring will put more pressure on USMCA routes

Why Now?

- HSR is far more energy efficient
- Reduction in Greenhouse Gas (GHG) emissions
- Less dependence on foreign oil
- Improvement in air quality

Charts & figures from UIC - The International Union of Railways, Paris, France. UIC.ORG

Why NOT Now?

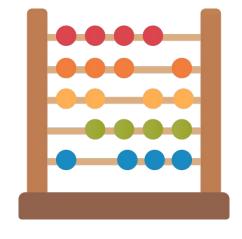
- Previous attempts in Texas failed
- Not a priority in Republican-led state
- Private property ownership culture at odds with eminent domain needs
- Infrastructure costs are astronomically out of control
- NOT ORGANIZED

Proposals, Costs, and Benefits

Proposal Categories

Туре	Most Like	Greenfield?	Build
High Speed Rail	Japanese Shinkansen	Yes	On proposed utility corridor selected by Texas Central
High Performance Passenger Rail	Amtrak Northeast Corridor (Acela)	Yes	Alongside existing UP and/or BNSF track
Conventional Passenger Rail	Amtrak Long Distance Routes	No	On existing UP and/or BNSF track

Proposals


#	Projects Evaluated	Proposed by	
1	High Speed Rail	Texas Central	
2	High Performance Passenger Rail - UP	Hypothetical	
3	High Performance Passenger Rail - BNSF	Hypothetical	
4	High Performance Passenger Rail - Collaborative	Hypothetical	
5	Conventional Rail - UP	TxDOT/Amtrak	
6	Conventional Rail - BNSF	Hypothetical	
7	Conventional Rail - Collaborative	Hypothetical	

Option Alignments

Benefit-Cost Analysis Approach

- Calculate **direct** monetary benefits for each proposal
 - 1. Travel time savings
 - Reduction in crashes
 - Reduced emissions damage
 - 4. Vehicle operating cost savings

Introduction	Approach		Early Findings			
BCA Preliminary Results						
Proposal	Time Travel Savings	Reduced Crash Costs	Reduced Emissions	Operating Cost Savings		
High Speed Rail	\$4.9B	\$7.4B	\$550M	\$3.8B		
HPPR - UP	\$1.3B	\$2.6B	\$196M	\$1.3B		
HPPR - BNSF	\$1.8B	\$3.4B	\$254M	\$1.6B		
HPPR - Collaborative	\$2.3B	\$4.2B	\$317M	\$2.0B		
Conventional - UP	\$225M	\$662M	\$51M	\$308M		

\$415M

\$531M

*All figures in 2022 dollars per USDOT BCA Guidance

\$900M

\$1.0B

\$62M

\$74M

**All figures are subject to revision

Conventional - BNSF

Conventional - Collaborative

Emerging Recommendations

B/C Ratio

0.52

0.27

0.36

0.44

0.83

1.20

1.44

Estimated

Capital Cost

\$32B

\$20B

\$20B

\$20B

\$1.5B

\$1.5B

\$1.5B

\$420M

\$495M

High Performance Rail - Not Worth Pursuing

- HPPR is lackluster across all alignments
 - Capital cost too high for what it offers
 - Not much of an improvement over conventional

Corridor	B/C Ratio	
HPPR - UP	0.27	
HPPR - BNSF	0.36	
HPPR - Collaborative	0.44	

*All figures are subject to revision

Conventional Rail Wins Short-Term

- Lowest raw benefit, but also low capital cost
 - Collaborative alignment performs best
 - Shortest alignment
 - Less stops

Corridor	B/C Ratio	
Conventional - UP	0.83	
Conventional - BNSF	1.20	
Conventional - Collaborative	1.44	

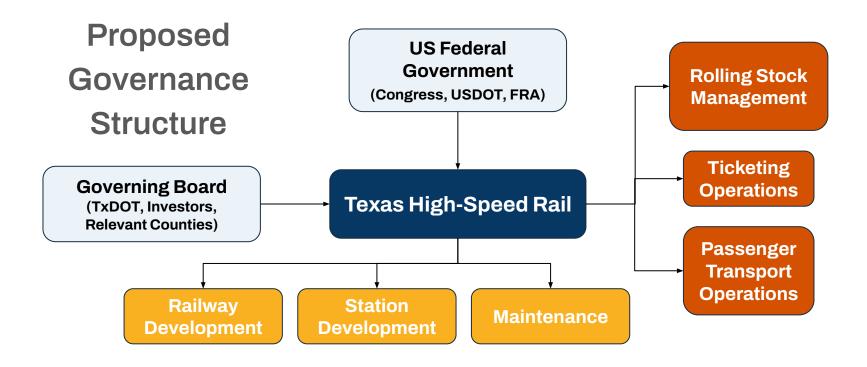
Texas Should Plan NOW for High Speed Rail

Highest raw benefits, but also very high capital cost

- Much better outcome than high performance passenger rail
- Viable in long-term for unquantifiable indirect benefits
- Best option for capturing and facilitating economic growth of state

High Speed Rail 0.52

*All figures are subject to revision


Texas Should Plan NOW for High Speed Rail

- BCA only outlines direct benefits
- But, there are many indirect benefits
 - Economic agglomeration
 - Labor market integration
 - Future-proofing for growth
 - Ease of travel and comfort
 - Evacuation use
 - And more...

Emerging Recommendations

Texas Should Plan NOW for High Speed Rail

Early Findings

Emerging Recommendations

Funding Proposal

Readiness = Ability to Receive Funds?

Possible Funding Sources

- Funds from IIJA
 - \$36 B for Federal-State Partnership for Intercity Passenger Rail Grants (\$7.2B per yr)
 - \$15.75 B for Amtrak National Network Grant (\$3.2 M per yr)
- Federal loan programs
 - TIFIA
 - RRIF
- State funds
 - Bond programs (CA)
 - Cap and Trade (CA)
- Public-Private Partnership
 - Private Activity Bonds (Brightline)
- o Innovative Financing
 - TIF (Station Area Development)

Build Capacity NOW

- Purchase land for future alignment
- **Build trust through** partnerships with freight companies now
- Prove ridership is viable through conventional rail

Recommendations

- Crawl before walk; walk before run
 - Develop conventional rail now, High Speed will take more sophisticated governance
- In the meantime
 - Get organized
 - Build rapport with key players
 - Capacity build for High Speed Rail

Questions?

Dallas-Houston Intercity Rail

Preliminary Findings

